17,200 research outputs found

    Near-deterministic quantum teleportation and resource-efficient quantum computation using linear optics and hybrid qubits

    Get PDF
    We propose a scheme to realize deterministic quantum teleportation using linear optics and hybrid qubits. It enables one to efficiently perform teleportation and universal linear-optical gate operations in a simple and near-deterministic manner using all-optical hybrid entanglement as off-line resources. Our analysis shows that our new approach can outperforms major previous ones when considering both the resource requirements and fault tolerance limits.Comment: 10 pages, 5 figures; extended version, title, abstract and figures changed, details added, to be published in Phys. Rev.

    Ballistic spin field-effect transistors: Multichannel effects

    Full text link
    We study a ballistic spin field-effect transistor (SFET) with special attention to the issue of multi-channel effects. The conductance modulation of the SFET as a function of the Rashba spin-orbit coupling strength is numerically examined for the number of channels ranging from a few to close to 100. Even with the ideal spin injector and collector, the conductance modulation ratio, defined as the ratio between the maximum and minimum conductances, decays rapidly and approaches one with the increase of the channel number. It turns out that the decay is considerably faster when the Rashba spin-orbit coupling is larger. Effects of the electronic coherence are also examined in the multi-channel regime and it is found that the coherent Fabry-Perot-like interference in the multi-channel regime gives rise to a nested peak structure. For a nonideal spin injector/collector structure, which consists of a conventional metallic ferromagnet-thin insulator-2DEG heterostructure, the Rashba-coupling-induced conductance modulation is strongly affected by large resonance peaks that arise from the electron confinement effect of the insulators. Finally scattering effects are briefly addressed and it is found that in the weakly diffusive regime, the positions of the resonance peaks fluctuate, making the conductance modulation signal sample-dependent.Comment: 18 pages, 15 figure

    Propofol Induction Reduces the Capacity for Neural Information Integration: Implications for the Mechanism of Consciousness and General Anesthesia

    Get PDF
    The cognitive unbinding paradigm suggests that the synthesis of cognitive information is attenuated by general anesthesia. Here, we investigated the functional organization of brain activities in the conscious and anesthetized states, based on characteristic functional segregation and integration of electroencephalography (EEG). EEG recordings were obtained from 14 subjects undergoing induction of general anesthesia with propofol. We quantified changes in mean information integration capacity in each band of the EEG. After induction with propofol, mean information integration capacity was reduced most prominently in the gamma band of the EEG (p=0.0001). Furthermore, we demonstrate that loss of consciousness is reflected by the breakdown of the spatiotemporal organization of gamma waves. Induction of general anesthesia with propofol reduces the capacity for information integration in the brain. These data directly support the information integration theory of consciousness and the cognitive unbinding paradigm of general anesthesia

    Optimal Schedules in Multitask Motor Learning

    Get PDF
    Although scheduling multiple tasks in motor learning to maximize long-term retention of performance is of great practical importance in sports training and motor rehabilitation after brain injury, it is unclear how to do so. We propose here a novel theoretical approach that uses optimal control theory and computational models of motor adaptation to determine schedules that maximize long-term retention predictively. Using Pontryagin’s maximum principle, we derived a control law that determines the trial-by-trial task choice that maximizes overall delayed retention for all tasks, as predicted by the state-space model. Simulations of a single session of adaptation with two tasks show that when task interference is high, there exists a threshold in relative task difficulty below which the alternating schedule is optimal. Only for large differences in task difficulties do optimal schedules assign more trials to the harder task. However, over the parameter range tested, alternating schedules yield long-term retention performance that is only slightly inferior to performance given by the true optimal schedules. Our results thus predict that in a large number of learning situations wherein tasks interfere, intermixing tasks with an equal number of trials is an effective strategy in enhancing long-term retention
    corecore